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 Drag over Contaminated Fluid Sphere with Slip 
Condition 

J.V. Ramana Murthy, Phani Kumar Meduri 
 

Abstract— In this manuscript stokes viscous flow past a partially contaminated fluid sphere with interfacial slip condition is considered. No 
mass transfer, zero tangential velocity on contaminated part, interfacial slip condition over clear part, shear stress continuity on clear part 
and regularity condition at far away from the body are considered for boundary conditions for evaluation of stream function. Drag on the 
contaminated fluid sphere is evaluated.  As a special case (i) fluid sphere with no slip condition, (ii) sphere with no slip conditions are also 
deduced from the obtained results.  

Index Terms— Slip condition, Gegenbauer polynomials, cap. 

————      —————————— 

1 INTRODUCTION                                                                     
tudy of flow in drops has wide applications in natural and 

engineering such as nuclear reactors, internal combustion en-
gines, sediment and pollutant transport processes. 
 
Stokes [1] solved the creeping flow problem past a sphere ne-

glecting inertial terms in the Navier Stokes equations. Basset  [2]  
calculated drag over a sphere in terms of slip parameter  s  (Tros-

tel number),   . Creeping flow over a fluid sphere was 

studied analytically independently by Rybczynski [3] and Hada-
mard  [4].  Happel and Brenner [5] discussed creeping flow past a 
sphere with no slip boundary condition. Clift et.al., [6],  Michael-
ides [7] in their monographs discussed about viscous flow past a 
fluid sphere with no slip boundary condition.  Sadhal and John-
son [8] derived exact solution for drag force for a fluid sphere 
with stagnation cap over its boundary along the rear side of the 
fluid drop. Stagnation cap is the collection of surfactant at the 
rear side on the surface of the fluid sphere. Saboni [9] numerical-
ly discussed about the contamination effects on a fluid sphere for 
Reynolds numbers from 0.1 to 400 and viscosity ratio of external 
to internal fluids ranging from 0 to 10 at different stagnation cap 
angle. 

 
Feng et al., [10] has discussed about the viscous flow past a 

viscous drop with interfacial condition at small but finite Reyn-
olds numbers. He derived a formula for drag coefficient. As spe-
cial cases he derived an expression for drag for solid sphere with 
(i) interfacial slip condition, (ii)  no slip boundary condition. 

 
In the present study the drag force for stokes flow for a viscous 

fluid over a contaminated fluid sphere is considered with the in-
terfacial slip over the clear part.  Stream function and drag over 
the contaminated fluid sphere are derived. The stream lines and 

vorticity lines drawn for different values of viscosity ratio ,  slip 
parameter value (s). 

2 FORMULATION OF THE PROBLEM 
A fluid sphere of radius a with contamination at rear end, 

which is held fixed in an uniform viscous flow, is considered.  
The fluid within the sphere and fluid flowing past the sphere are 
assumed to be immiscible.  The flow is steady, incompressible, 
axi symmetric, with uniform velocity   .   A spherical polar 
coordinate system is considered with origin at the center of the 
sphere and Z-axis along the direction of uniform flow. 

  are viscosity, density of interior and exterior fluids. 

The viscosity ratio is taken as , . 
The viscous fluid is assumed to flow from left to right. In the 

fluid sphere the clear part (no cap region) is considered for  
  and contaminated part (cap region) is for  

  where  .    is the position of cap or 
cosine angle of contamination. 

. 
The velocity components in radial direction U and transverse 

direction V can be expressed in terms of stream function as 

2

1 1( , ) , ( , )
sin sin

U R V R
R R R

θ θ
θ θ θ
∂Ψ − ∂Ψ

= =
∂ ∂

   (2.1) 

Any physical (dimensional or non dimensional) quantity for 
internal flow is represented by fi and   external flow by fe. 
 
Any physical (dimensional or non dimensional) quantity for 
internal flow is represented by fi and   external flow by fe. 
The following  

 2
0 0 0 0, , , ,R ar Q U q U U u V V v a U ψ= = = = Ψ =  

 
Reynolds number for external flow is  
 
 and for internal flow  , 
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 is used for casting equations into non dimensional form.  
 
 
 
The equation of motion in terms of stream function for the 
internal flow is   
                      4 0E iψ =                                      (2.2)                                       
The equation of motion in terms of stream function for the 
external flow is 

                               4 0E eψ =                                     (2.3)            
where 

 

2 2 2
2

2 2 2

(1 )      

 

xE Stokes stream function
r r x

operator

∂ − ∂
= + =
∂ ∂  

 Equations (2.2), (2.3) are solved for  ,e iψ ψ   using the fol-
lowing boundary conditions (2.4)- (2.9): 
 

  0,   ( 1, 1)    1,  0At or x x on r e iθ π ψ ψ= = = − = = =     
                                                                                               (2.4)                     
Tangential velocity is zero along the contaminated part 

0
(1) (1) 0      1e i for x x

r r
ψ ψ∂ ∂

= = < <
∂ ∂

                    (2.5)                                 

At the interface, tangential velocity is proportional to the tan-
gential shear along the clear surface which implies 

 
2

02

(1) (1) (1)( 2)      1e e is s for x x
r r r

ψ ψ ψ∂ ∂ ∂
= + − − < <

∂ ∂ ∂
               

                                                                                              (2.6) 
 
where s is the slip parameter given by  
(β is coefficient of sliding friction) 
The shear stress is continuous along the clear surface at the 
interface which implies 

02 2

1 1      1( ) ( )e i for x x
r r r r r r

ψ ψµ∂ ∂ ∂ ∂
= − < <

∂ ∂ ∂ ∂
     (2.7)           

Far away from the sphere, regularity condition is taken 
2 21lim (1 )

2r
e r xψ

→∞
= −                                                   (2.8)                                                               

The physical condition that is zero velocity at the origin  is 
finite 

lim ( )
r

i is taken as zeroψ
→∞

< ∞                                     (2.9)                                                                                                                       

                                     

3 SOLUTION OF THE PROBLEM 
 
The velocity components  u, v  and stream function ψ  for in-
ternal and external flows are given by 
 

0ui for R a
u

ue for a R
< ≤

=  ≤ ≤ ∞
   ,              

0 
 

vi for R a
v

ve for a R
< ≤

=  ≤ ≤ ∞
 ,       

0 i for R a
e for a R

ψ
ψ

ψ
< ≤

=  ≤ ≤ ∞
 

 
To match with uniform velocity at infinity, the solution for   

can be assumed in the form: 
 

2 0

2 0

( ) ( ) 1 (   )
( , )

( ) ( ) 1  (  ) 
fen r G x for x x no cap region

e r x
fec r G x for x x cap region

ψ
− < <
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2 0

2 0

( ) ( ) 1 (   )
( , )

( ) ( ) 1   (  )
 
 

fin r G x for x x nocap region
i r x

fic r G x for x x cap region
ψ

− < <
=  < <

 
 where 2 ( )G x  is Gegenbauer polynomial of order 2. 

The functions for external flow with no cap and cap regions 
are fen(r), fec(r)  and  for internal flow with no cap and cap re-
gions are fin(r), fic(r) respectively  which are given as 

2 41
1 1 1

2 42
2 2 2

2 43
3 3 1

2 44
4 4 4

(0, 2) ( ),

(0, 2) ( ) (3.1)

(0,2) ( ),

(0, 2) ( ) (3.2)

Bfen A r C r D r
r
Bfec A r C r D r
r

Bfin A r C r D r
r
Bfic A r C r D r
r

= + + +

= + + +

= + + +

= + + +

 

The arbitrary parameters values are evaluated substituting the 
conditions (2.4) to (2.9) 

 
 

 

                                                                                           (3.3)  
 
 
 
 

                                                                                       
                                                                                      (3.4) 

The vorticity lines can be obtained from the equations 
 

                                           
2

sin
E

r
ψζ
θ

= −                     (3.5) 
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      Taking swirl of vorticity as 2 sinE rζ θΩ = − Ψ = ,  
       we have 
 
       
 
 
 
                                                                                              (3.6)                                                                 

 
 

 
 
                                                                                          (3.7) 
 

gen(r), gec(r), gin(r), gic(r) using (3.3) and (3.4) 
 
 
 
 
 
 

                                                                                            (3.8) 
 
 

 
 
 
                                                                                      (3.9) 
                                                                                

4 DRAG 
 

The drag force on the contaminated fluid sphere is evaluated 
using the following formula 

2
11 21

0

2 ( cos sin ) sin|r aDrag a T T d
π

π θ θ θ θ== −∫    (4.1)                                              

1
2 2

0 11 21
1

2 ( 1 ) 1|r aDrag a u T x T x x dxπ µ =
−

= − − −∫       

                                                                                               (4.2)                                      
Stress tensor components are obtained as  

 

11 212 ( )   cosu v uT P and T r x
x r r r

µµ µ θ
θ

∂ ∂ ∂
= − + = + =

∂ ∂ ∂
                                                                                              (4.3) 

 
Substituting (4.3) in (4.2) and simplifying, gives drag value as 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
          
                                                                                            
                                                                                          (4.4) 
 
                                                                                 

The Drag Coefficient   
 
 
 
 
 
 
 
 
 
 
 
 
 

Special cases 
                            

(i) If 0 1x = −   and as  s →∞  (cap for contamination 
covers the whole sphere and we get the case of a 
solid sphere) 

             The drag coefficient in this case for solid sphere i.e.,  
 
. 
   
     ( ii) If  0 1x = , there is no contamination i.e.,   the boundary    
            entire reduces to the sphere has  no cap i.e.,    
            we get the case of a fluid sphere with slip condition. 
            In this case the drag coefficient is given by 

           
8 2 6 3[ ]

3D
s sC

Re s s
µ µ
µ µ

+ +
=

+ +
 

            The expression matches with the drag coefficient value  
            of a fluid sphere with interfacial slip     
            condition  given by  Feng et al.,[10],  
 

(iii)  As the slip parameter, s →∞  we get the case of a  
        fluid sphere with no slip case. 
       In this case the drag coefficient is  

              
8 2 3[ ]

1DC
Re

µ
µ

+
=

+
 

            The expression matches with the drag coefficient of a  
             fluid sphere with no slip condition mentioned by    
              Rybczynski [3] and Hadamard [4]. 
 

(iv)  Again asµ →∞ , we get the case of a solid sphere  

2 0
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         case with no slip condition. 
       In this case the drag coefficient is given by 

            
24

DC
Re

=  

             this matches with the solid sphere case of   Stokes [1]. 
 

5 RESULTS AND DISCUSSIONS 
 

The results for drag coefficient are presented in the form 
of graphs and the results for stream line and vorticity lines are 
presented in the form of contour graphs.  

Figure (1) shows the variation of drag coefficient           with  
 
slip parameter(s) values for different 0x  values at fixed Reyn 
 
olds number (Re)=1. In Figure 1, the value of       increases 
with increment of slip parameter value for any length of the 
cap. However, the value of            asymptotically reaches the 
 
 standard value        as  slip   parameter s →∞ (matches with  
 
no slip condition).  From 1(a), 1(b), we can observe that as   

 , for the drag coefficient difference between fluid 
sphere with cap and solid sphere disappears i.e., when the cap 
is like a solid surface the effect of clear fluid part on the drag 
will be negligible.  

 
 

 
 
 
 
 
 

 

 
 

 
 
 
 
                                             (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
                                           
 
 
         
                                                (b) 
 

 
 
 
 
 
 
Figure (2) shows the variation of   with for different 

values of slip parameter(s) at  Re=1. 
 In Figure 2(a) for small values of  µ, the value of  first 

increases and attains the maximum at  = -0.7, beyond that it 
decreases and attains minimum at = 0.7. With further in-
crement of  the value of  increases 1.   

From 2(b) we observe that for large values of µ, the range of 
CD  lies between 22 to 24 only for  
               and the curve is almost a straight line, indicating the 
negligible effect of contamination cap on drag.  
Increasing and decreasing nature of CD for small values of µ, 
may be due to sudden change of flow pattern due to contami-
nation cap.  The flow pattern can be seen in figures 4, 5 and 6.  
The jump in the stream lines is due to negligence of non linear 
terms. If the non linear convective terms are considered, the 
problem becomes difficult to solve and much attention is re-
quired to solve it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1 (a). CD graphs at different slip values 
and x0 values with fixed Reynolds number 
at (Re) =1,  μ = 1.  

 

 

Fig. 1(b). CD graphs at different slip val-
ues and x0 values with fixed Reynolds 
number at (Re) =1  μ = 55.  

  

 

 

Fig. 2 (a)  CD graphs at different x0 values, 
different slip parameters with fixed Reyn-
olds number at (Re) =1,  μ = 1. 
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   Figure (3) shows the variation of  with slip parameter 

(s) value for different values of µ.  The value of increases 
rapidly with increment of slip for lower values of slip and as-
ymptotically approaches the constant value as slip parameter 
s →∞ . For higher value of  the trend remains the same but 
magnitude of increases for any given value of slip parmeter 
(s). For higher values of slip and  the value of   matches 

with that of a solid sphere with no slip condition
24
Re

. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (4) represents the flow pattern at viscosity ratio ( ) 
=5, slip parameter value(s) =10, with varying of size of  

cap from -1 to 1.   At 1, where the fluid surface is 
covered entirely with cap, it behaves like a solid sphere with 
no internal circulations. The external stream line pattern is 
symmetric. At = -0.7, internal circulations are observed for 
-1 < x < -0.7, the rest of the region ( -0.7 <  x < 1 ) is covered 
with cap, hence no internal circulation.  With increase in 

values,s the cap region is reduced and finally when =1, 
there is no cap and it behaves like a full fluid sphere with in-
ternal circulation lines.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                           
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Fig. 2 (b)  CD graphs at different x0 values, 
diff t li  t  ith fi d R

           
 

 

Fig. 3  CD graph for different slip parameter(sp) 
values at x0=0.3 with fixed Reynolds number 
(Re)=1.  

 

 

Fig. 4 (a). Stream lines for μ = 5, Slip (sp) =10, at   
                x0 = -1 . 
 

 

 

Fig. 4 (b). Vorticity lines for μ = 5, Slip(sp)=10, at   
                x0 = -1 . 
 

 

 

Fig. 4 (c). Stream lines for μ = 5, Slip (sp) =10, at   
               x0 = -0.7 . 
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Figure. 5 represents the flow pattern for different slip pa-
rameter(s) value with  fixed at 30 and =0.6. At slip=0 
(perfect slip) the stream lines are in contact with the surface 
with no internal circulations. As the slip parameter values are 
increasing and tends to no slip case ( s →∞ ) the stream lines 
are detaching from the surface.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4 (d). vorticity lines for μ = 5, Slip(sp)=10, at   
                x0 =  - 0.7 . 
 

 

 

Fig. 4 (e). Stream lines for μ = 5, Slip (sp) =10, at   
               x0 =  0.7 . 
 

 

 

Fig. 4 (f). Vorticity lines for μ = 5, Slip(sp)=10, at    
                x0 =   0.7 . 
 

 

 

Fig. 4 (g). Stream lines for μ = 5, Slip (sp) =10, at   
                x0 = 1 . 
 

 

 

Fig. 4 (h). Vorticity lines for μ = 5, Slip(sp)=10, with   
                x0 =  1. 
 

 

 

        Fig. 5 (a).Stream lines for μ =30, x0= 0.6, 
          Re=1 at slip s=0 
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Figure (6) represents the flow pattern for different values 

viscosity ratio ( ). It was observed that at low value of viscos-
ity ratio   there is a jump in the stream line pattern at the fluid 
sphere and solid sphere interface.  This is reduced with in-
crease in the  value. With the increase in  value,s the inter-
nal flow lines are reduced and at high value of  the fluid 
sphere behaves like a solid one and hence there are no internal 
circulation lines. 

 

        Fig. 5 (b).Vorticity lines for μ =30, x0= 0.6, 
          Re=1 at slip s=0 
  

 

        Fig. 5 (c). Stream lines for μ =30, x0= 0.6, 
          Re=1 at slip s=10 
  

 

        Fig. 5 (d).Vorticity lines for μ =30, x0= 0.6, 
          Re=1 at slip s=10 
  

 

        Fig. 5 (e). Stream lines for μ =30, x0= 0.6, 
          Re=1 at slip s=1000 
  

 

        Fig. 5 (f).Vorticity lines for μ =30, x0= 0.6, 
          Re=1 at slip s=1000 
  

 

        Fig. 5 (g). Stream lines for μ =30, x0= 0.6, 
          Re=1 at slip s=100000 
  

 

        Fig. 5 (h).Vorticity lines for μ =30, x0= 0.6, 
          Re=1 at slip s=100000 
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        Fig. 6 (a). Stream lines for slip=10   
                       x0= 0,  Re=1 at μ =1 

  

 

        Fig. 6 (b). Vorticity lines for slip=10   
                       x0= 0,  Re=1 at μ =1  

  

 

        Fig. 6 (c).Stream lines for slip=10   
                       x0= 0,  Re=1 at μ =10  

  

 

        Fig. 6 (d). Vorticity lines for slip=10   
                       x0= 0,  Re=1 at μ =10 

  

 

        Fig. 6 (e). Stream lines for slip=10   
                       x0= 0,  Re=1 at μ =100 

  

 

        Fig. 6 (f). Vorticity lines for slip=10   
                       x0= 0,  Re=1 at μ =100  
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6 CONCLUSION 
In this manuscript, the stream function  ψ  and vorticity 

function  Ω  for uniform flow past a fluid sphere with contam-
ination and slip boundary condition were found. Drag expres-
sion was obtained and as special cases (i) No slip condition as 
s →∞  and (ii) Solid sphere case as viscosity ratio  µ →∞  
are evaluated. The deduced results are matching with the 
available standard results in the literature. 
The flow pattern were drawn which are in good agreement 
with the results in literature. 

. 
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